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ABSTRACT
An analytic model is developed for the erosion of protoplanetary gas discs by high-velocity
magnetized stellar winds. The winds are centrifugally driven from the surface of rapidly
rotating, strongly magnetized young stars. The presence of the magnetic field in the wind
leads to Reynolds numbers sufficiently large to cause a strongly turbulent wind/disc boundary
layer which entrains and carries away the disc gas. The model uses the conservation of mass
and momentum in the turbulent boundary layer. The time-scale for significant erosion depends
on the disc accretion speed, disc accretion rate, the wind mass-loss rate, and the wind velocity.
The time-scale is estimated to be ∼2 × 106 yr. The analytic model assumes a steady stellar
wind with mass- loss rate Ṁw ∼ 10−10 M� yr−1 and velocity vw ∼ 103 km s−1. A significant
contribution to the disc erosion can come from frequent powerful coronal mass ejections
(CMEs) where the average mass-loss rate in CMEs, ṀCME, and velocities, vCME, have values
comparable to those for the steady wind.

Key words: accretion, accretion discs – magnetic fields – Sun: coronal mass ejections
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1 IN T RO D U C T I O N

A wide body of observations establish that the lifetime of gaseous
protoplanetary discs is relatively short. While most protostars
younger than 106 yr have gaseous discs, only 50 per cent of pro-
tostars 3 × 106 yr in age have gaseous discs and very few stars
6 × 106 yr or older have gaseous discs (Armitage 2010). From
spectroscopic observations of the hot continuum radiation produced
when infalling gas impacts the stellar surface, it is known that the
accretion rate of gas on to a star decays on a similar time-scale
(Hartmann et al. 1998). Observations also suggest that the dis-
persal of gas occurs on a wide range of disc radii during a short
time-scale (Skrutskie et al. 1990; Wolk & Walter 1996; Andrews &
Williams 2005).

The short lifetime of a gaseous disc plays a critical role in the
formation of planetary systems. It directly affects the time available
for planetesimals to agglomerate additional material, as well as
the migration of planets within the disc (Armitage 2010; Zsom
et al. 2010). The mechanisms by which the gas is lost may play an
important role in the formation of planetary systems.

A class of protoplanetary discs termed transition discs have been
identified by a dip in the mid-infrared spectra which can be mod-
elled by a reduced surface density of dust in the inner regions (�35
au) of the discs (Espaillat et al. 2007, 2014). Submillimetre imaging
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directly shows a deficit in surface density of dust in these systems
(e.g. Piétu et al. 2006). The observations suggest an inside-out dis-
persal of the dust possibly caused by photoevaporation (Clarke,
Gendrin & Sotomayor 2001; Owen, Clarke & Ercolano 2012), by
the presence of giant planets, or other processes (Birnstiel et al.
2013). Photoevaporative destruction of discs is thought to occur
when the photoevaporative mass-loss rate Ṁpe exceeds the accre-
tion rate Ṁd on to the star (e.g. Richling & Yorke 1997; Hollenbach,
Yorke & Richstone 2000). Additionally, the radial distribution of
dust is influenced by grain growth, migration, destruction in colli-
sions, and trapping in vortices excited at the outer gap edge caused
by giant planets (Regály et al. 2012). Transition discs have lower
accretion rates than younger standard discs, but not sufficiently low
to explain the large sizes of the regions of low dust density by pho-
toevaporation (Birnstiel 2013). A promising possibility is that the
depletion of dust in the inner regions of transitional disc is due to the
presence of multiple planets located at radii ∼0.1–10 au (Espaillat
et al. 2014).

Multiple processes may be responsible for the loss of the gas and
entrained dust from protoplanetary discs. This work analyses the
erosion of the gas and entrained dust particles from discs caused
by high-velocity magnetized stellar winds. The presence of the
magnetic field leads to Reynolds numbers sufficiently large to cause
a strongly turbulent wind and disc boundary layer (see Fig. 1)
as suggested by Lovelace, Romanova & Barnard (2008). Strong
magnetized winds from young stars with discs are likely because
the stars are known to rotate rapidly and to be strongly magnetized.
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Stellar wind erosion of protoplanetary discs 1629

Figure 1. A cross-section of the protoplanetary disc with the disc–wind
turbulent boundary layer (h < z < H) and outer oblique shock shown. n̂ is
the normal to the shock wave, vw is the wind velocity, h is the disc half-
thickness, and H is the vertical height of the shock. The figure has been
adapted from a figure in Lovelace et al. (2008).

The magnetic winds depend on both the star’s rotation rate and
its magnetic field owing to complex and likely random dynamo
processes. Thus, a one-to-one correlation with the rotation rate is not
expected. Wind erosion of protostellar discs has been discussed in a
number of previous works as reviewed by Hollenbach et al. (2000).
However, the important role played by a rapidly rotating star’s
magnetic field in launching a high-velocity wind has apparently not
been considered. Furthermore, the role of the wind’s magnetic field
in producing a strongly turbulent wind/disc boundary layer has not
been discussed. In addition to a steady high-velocity stellar wind,
we consider the disc erosion due to frequent powerful coronal mass
ejections (CMEs).

Section 2 of the paper discusses magnetized stellar winds.
Section 3 develops an analytic model for the evolution of the mass
surface density of the disc �d(r, t). Section 4 discusses the con-
tribution to disc erosion resulting from frequent powerful CMEs.
Section 5 gives the conclusions of this work.

2 MAG NETIZED ST EL LAR W INDS

The winds from rotating magnetized stars may be thermally driven
as in the solar wind. The magnetic field has an important role in
the outward transport of angular momentum by the wind (Weber &
Davis 1967; Matt & Pudritz 2008a,b). For thermally driven winds
from slowly rotating stars, the radial flow velocity at large distances
is the Parker velocity vP = [2c2

s0/(γ − 1) − 2 GM∗/R∗]1/2, where
cs0 is the sound speed at the star’s radius R∗, M∗ is its mass, and
γ is the specific heat ratio. [Note that both spherical (R, θ , φ) and
cylindrical (r, φ, z) inertial coordinates are used in this work.]

In contrast, for conditions where (1) the thermal speed of the
gas close to the star is small (compared with the velocity), (2)
the star’s magnetic field is strong, and (3) the star rotates rapidly,
there are magnetically driven winds (also termed fast magnetic ro-
tator, FMR, winds; Michel 1969; Belcher & MacGregor 1976).
These winds are driven by the centrifugal force of the star’s
rapidly rotating magnetic field rather than the thermal energy in the
star’s corona.

For a rotating magnetized star, the radial wind velocity at large
distances from the star is vw = 1.5[�2

∗(BR∗R2
∗)2/Ṁw]1/3 (Michel

1969), where P∗ = 2π/�∗ is the rotation period of the star and
BR∗ = BR(R∗). The characteristic acceleration distance of the winds
is the Alfvén radius of the wind, RAw = (2/3)1/2(vw/�∗) (Belcher &

MacGregor 1976). For a star with rotation period P∗ = 10 d, a
radius twice the radius of the Sun, R∗ = 1.4 × 1011 cm (Ar-
mitage & Clarke 1996), a surface magnetic field BR∗ = 0.5 kG, and
Ṁw = 10−10 M� yr−1, one finds vw ≈ 1400 km s−1, and RAw ≈ 1 au.
For the magnetic acceleration of the solar wind to be important, the
product of the rotation rate �∗ times the magnetic flux per sterradian
BR∗R2

∗ would need to be ∼20 times larger than the present values
(Belcher & MacGregor 1976). The magnetic winds cause the rapid
spin-down of the stars on a time-scale Tsdw = I [(2/3)R2

AwṀw]−1,
where I is the moment of inertia of the star (Weber & Davis 1967;
Belcher & MacGregor 1976). This time-scale may be as short as
∼106 yr. However, the spin-down torque of the wind is strongly
dominated by the spin-up torque due to the disc accretion to the
star for accretion rates ∼10−8 M� yr−1. In this regime, the star’s
rotation tends to be locked to the rotation rate of the inner disc by
the magnetic coupling between the star and the disc as proposed
by Königl (1991) and observed in magnetohydrodynamic (MHD)
simulations by Long, Romanova & Lovelace (2005). In contrast,
Matt & Pudritz (2008a,b) argue theoretically that the magnetic cou-
pling is ineffective and that an accretion powered stellar wind acts
to counteract the tendency of the accretion to spin-up the star. A
review of this topic is given by Bouvier et al. (2014).

The magnetic fields of classical T Tauri stars (CTTSs) are typ-
ically in the kG range (Johns-Krull & Valenti 2000; Johns-Krull
2007). Furthermore, these stars typically rotate rapidly with periods
∼2–15 d (Bouvier et al. 1993, 2014). Thus, magnetically driven
winds may be important for T Tauri stars.

Magnetically driven winds from the disc/magnetospheric bound-
ary have been found in MHD simulations of rapidly rotating, disc-
accreting stars particularly in the ‘propeller’regime (Romanova &
Bisnovatyi-Kogan 1999; Romanova et al. 2005, 2009; Ustyugova
et al. 2006; Lovelace, Lii, Romanova & Lovelace 2012; Lii et al.
2014). The propeller regime arises when the magnetospheric radius
rm becomes larger than the corotation radius rcr = (GM∗/�2

∗)1/3.
Because rm depends inversely on the disc accretion rate Ṁa (to a
fractional power), the propeller regime is unavoidable as Ṁa de-
creases in the late stages of disc evolution. The winds are found to
flow in opposite directions along the rotation axis transporting en-
ergy and angular momentum away from the star. For the case of an
aligned a dipole field, the field acts to block an equatorial outflow.
However, for multipolar fields, winds are expected in all directions
from the star’s surface.

In deriving the evolution of disc density due to this magnetized
wind, it is useful to consider the physical conditions in the wind
at a distance from the sun of R = 1 au with fiducial conditions
of wind density nw = 105 cm−3, wind speed vw = 103 km s−1, a
predominantly toroidal time averaged magnetic field Bw = 0.1 G,
and ion (proton) and electron temperatures of Ti = Te = 105 K. From
this distance and beyond, (1) the wind velocity is predominantly
radial, (2) it is superfast magnetosonic, and (3) it is much larger
than the Keplerian velocity of the disc matter.

Under these conditions, the ion and electron gyrofrequencies are
ωci ≈ 103 s−1 and ωce ≈ 2 × 106 s−1. The corresponding ion
and electron gyroradii are rgi ≈ 3 × 103 cm and rge ≈ 70 cm.
From this, the ion and electron collision times (∝ T3/2/n) are
τ i ≈ 470 s and τ i ≈ 11 s. The ion and electron mean-free paths are

i = 
e = 1.4 × 109 cm (Braginskii 1965). Thus, ωciτ i ≈ 4.6 × 105

and ωceτ e ≈ 2 × 107.
In the absence of a magnetic field, the kinematic viscosities

of ions and electrons are ν0i ≈ v2
thiτi ≈ 4 × 1015 cm2 s−1 and

ν0e ≈ v2
theτe ≈ 2 × 1017 cm2 s−1, where vth, i, e is the ion or elec-

tron thermal speed. Thus, without a magnetic field the Reynolds
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number, Re = rvw/ν0e ≈ 9000, is such that a boundary layer flow
is laminar.

When the magnetic field is included, there are five different vis-
cosity coefficients. Fortunately, for the considered problem the im-
portant viscosity coefficient is that for momentum transport across
the magnetic field. For example, the momentum flux-density com-
ponent is TRθ = −ρν⊥R−1∂vR/∂θ . For ions, the viscosity term
is ν⊥i ≈ ν0i/(ωciτ i)2 ≈ 2 × 104 cm2 s−1, and for electrons it is
ν⊥e ≈ ν0e/(ωceτ e)2 ≈ 500 cm2 s−1. Using the viscosity ν⊥i, the
effective Reynolds number for the wind is Rew = Rvw/ν⊥i ∼ 1018.
Evidently, unlike the non-magnetic case with laminar boundary
layer flow, with a magnetic field the boundary layer flow is strongly
turbulent. The large reduction of the viscosity results from the par-
ticle step size between collisions being a gyroradius rather than a
mean-free path. Thus, the estimated Reynolds number also holds
for a turbulent magnetic field.

The relevant heat conductivity coefficient is that for the heat
flux across the magnetic field, qθ = −κ⊥R−1∂(kBT )/∂θ , where
κ⊥ ≈ κ⊥i ≈ 2nv2

thiτi/(ωciτi)2 ≈ 3.8 × 109 (cm s)−1 and where kB

is Boltzman’s constant. For this heat conductivity, the heat flow
from the wind into the disc is negligible compared with the energy
flux per unit area from the disc [3GM∗Ṁd/(8πR3)] for accretion
rates Ṁd ∼ 10−8 M� yr−1, which is in turn small compared to the
irradiation of the disc by the star.

A weak oblique shock arises where the wind encounters the much
denser disc. This occurs at a height H(r) 	 r above the equatorial
plane for a disc with half-thickness h(r) < H(r) (Fig. 1). The angle
between the incident flow and the shock is β ≈ rd(H/r)/dr 	 1,
with β expected to be >0.

After passing through the shock, the flow is deflected by an
angle δ = 2β/(1 + γ ) = 3β/4 (where γ = 5/3) away from
the equatorial plane, and the flow speed is reduced by a small
fractional amount. This region between h and H is the boundary
layer. The influx of wind matter into this layer is −dS · (ρwvw) ≈
dSρwvwr[d(H/r)/dr], where dS = rdrdφ is the area element of
the shock on the top side of the disc. The Keplerian velocity
(vK = √

GM/r) of the disc is small compared to the wind velocity
for r ≥ 1 au, so it is neglected. The density in the boundary layer
varies from ρ(r, h) � ρw at the surface of the disc to ρw at z = H.
The time-averaged radial flow velocity varies from |vr(r, h)| 	 vw

to vr = vw at z = H; vr(r, h) is neglected.
For an explanation of our notation, it is useful to first consider

stationary conditions (later we evaluate the time evolution of the
disc). In this case, the conservation of mass and radial momentum
in the annular region a − b − c − d (shown in Fig. 2) of the boundary
layer on the top side of the disc provides

∂
(
rF m

r

)
∂r

= r

[
r

d(H/r)

dr

]
ρwvw + 1

4π

dṀd

dr
, (1)

∂
(
rF p

r

)
∂r

= r

[
r

d(H/r)

dr

]
ρwv2

w. (2)

The terms on the left-hand side are due to the vertical sides of
the region and the right-hand side is due to the sides a − b and
c − d. Here, F m

r is the mass flux and F p
r is the radial momentum

flux. Both fluxes are given per unit circumference of the top side of
the disc,

F m
r =

∫ H

h

dz〈ρvr〉, F p
r =

∫ H

h

dz
〈
ρv2

r

〉
. (3)

Figure 2. Sketches of the vertical profiles of density ρ and radial velocity
〈vr〉 within the boundary layer is shown on the left. Here, ρd is the density
at the surface of the disc, ρw is the density of the wind, and vw is the speed
of the wind. The figure has been adapted from a figure in Lovelace et al.
(2008).

The average radial velocity in the boundary layer is

U (r) = F p
r (r)

F m
r (r)

. (4)

The angular brackets indicate averages are over the turbulent fluc-
tuations. The mass-loss rate of the disc per unit radius due to en-
trainment is dṀd/dr. The disc matter influx to the boundary layer
brings in negligible radial momentum.

The average velocity U depends on the vertical profiles of den-
sity and radial velocity – which are both unknown. We expect the
profiles, for example 〈vr(z)〉 to be substantially different from those
of laboratory turbulent boundary layers over solid surfaces where
ρ = const (e.g. Schlichting 1968; Roy & Blottner 2006). The main
reason for the difference is that the density at the surface of the disc
ρ(r, h) is many orders of magnitude larger than the wind density ρw.
For a laboratory boundary layer, a mixing length model of the mo-
mentum transport gives (z′)2(d〈vr〉/dz′)2 = const, where z′ ≡ z − h,
and this gives the well-known logarithmic velocity profile (see e.g.
Schlichting 1968). For this profile most of the change of velocity is
quite close to the wall (z′ = 0). In contrast, for the disc boundary
layer a mixing length model gives ρ(z′)(z′)2(d〈vr〉/dz′)2 = const.
Because of the density dependence, the change in the velocity oc-
curs relatively far from the wall. An important consequence of this
is that the average velocity U is much smaller than vw, because U
is the density weighted average radial velocity. Here, we assume
that U is larger by a factor of g > 1 than the local escape velocity
vesc = (2GM∗/r)1/2 so that the matter flow in the boundary layer
escapes the star.

3 N O N - S TAT I O NA RY E VO L U T I O N

In the absence of wind erosion, conservation of the disc matter
gives

∂(2πr�d)

∂t
− ∂(2πru�d)

∂r
= 0, (5)

where

�d(r, t) =
∫ h

−h

dz ρ(r, z, t), u(r, t) = − 1

�d

∫ h

−h

dz ρvr, (6)

with u ≥ 0 being the accretion speed of the disc matter.
For stationary conditions, ru�s = const. We assume an α-disc

model (Shakura & Sunyaev 1973): u = αc2
s /vK, where α = const
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∼10−3–0.1, cs is the mid-plane isothermal sound speed, and vK is
the Keplerian velocity of the disc. Commonly considered models
have �d ∝ r−q with q = const ∼1. This implies that T ∝ rq − 3/2 and
u ∝ rq − 1. The disc is assumed to be in hydrostatic equilibrium in
the vertical direction so that h/r = cs/vK and thus h/r ∝ rq/2 − 1/4.
For specificity, we adopt q = 1 so that u = const and h/r ∝ r1/4.

With the wind erosion included, we consider that u and h/r are
the same as in a stationary disc in the region where �d(rt) > 0.
The basis for this is the assumption of the Shakura & Sunyaev
(1973) α = const model where u and h depend on the mid-plane
disc temperature which in turn depends on the stellar irradiation of
the disc. Further, we assume that the surface density in the top and
bottom boundary layers, �bl = 2

∫ H

h
dz ρ, is much smaller than �d.

Mass conservation then gives

∂ (2πr�d)

∂t
− ∂ (2πru�d)

∂r

= − 4π
∂ (rFr

m)

∂r
+ 4πr2

[
d

dr

(
H

r

)]
ρwvw (7)

where Fr
m is given in equation (3).

Conservation of momentum in the radial direction gives

∂ (2πr�blU )

∂t
+ ∂ (4πrFr

p)

∂r
= 4πr2

[
d

dr

(
H

r

)]
ρwvw

2, (8)

where F p
r is given in equation (3) and U(r, t) in equation (4).

The term ∂(2πr�blU )/∂t can be neglected because �bl 	 �d.
Equation (8) can then be integrated from the inner radius of the disc
rin where F m

r = 0 to a radius r to give

rF m
r = Ṁwvw

4πU

[
H

r
−

(
H

r

)
i

]
, (9)

where the i-subscript indicates evaluation at r = rin. We have again
assumed for simplicity that the stellar wind is spherically symmetric
with both Ṁw = const and vw = const in space and time for t > 0.
Thus, the right-hand side of equation (7) is

R10 = −Ṁw
∂

∂r

(
vw

U

[
H

r
−

(
H

r

)
i

]
− H

r

)
. (10)

Equation (7) can be integrated using the method of characteristics.
In view of the fact that u = const, we have

d(2πr�d)

dt
=

(
∂

∂t
− u

∂

∂r

)
(2π�d). (11)

The characteristics are r = r0 − ut, where r0 is the radius of the disc
fluid element at t = 0 with rin ≤ r0 ≤ rout and rout the outer radius of
the disc. At t = 0 the surface density of the disc is �d0 = �0i(rin/r).
Hence

d�̂d

dt
= R10

2πrin�0i
, (12)

where �̂d(r, t) ≡ �d(r, t)/�d0(r). Integrating this equation gives

�̂d(r, t) = 1 +
∫ t

0
dt

R10

2πrin�0i
,

= 1 +
∫ r+ut

r
dr ′ R10(r ′)

2πrinu�0i
,

= 1 − F (r + ut) + F (r), (13)

where

F (r) = Ṁw

Ṁd0

(
vw

U (r)

[
H

r
−

(
H

r

)
i

]
− H

r

)
, (14)

Figure 3. Evolution of the disc surface density �̂d(r, t) = �d(r, t)/
�d(r, 0) for an illustrative case discussed in the text. The radius is mea-
sured in units of the initial inner radius of the disc, rin(t = 0), which is taken
to be 10r� = 7 × 1011 cm. Time is measured in units of tin = rin/u = 257 yr,
where the accretion speed is u = 86.3 cm s−1 corresponding to a viscos-
ity coefficient α = 10−2 and a disc half-thickness at rin of hin = 0.025rin.
Additionally, we have assumed H/r = 0.03(r/rin)β with β = 0.3 so that
(H/r)out = 0.3. Also, U(r) = g(2GM/r)1/2 with g = 2 and M = M�, which
is twice the local escape speed.

with Ṁd0 = 2πrin�d0 = const being the disc accretion rate at the
inner radius of the disc assuming the disc extents into rin(t = 0).
As discussed in Section 3, we consider the mean boundary layer
velocity U to be a factor g ≥ 1 times larger than the local escape
velocity; that is, U(r) = g(2 GM/r)1/2. Additionally, we assume
H/r = (H/r)i(r/ri)β with β > 1/4.

An estimate of the time tcr at which �̂ decreases to zero at
rin(t = 0) follows from equations (13) and (14) assuming ut � rin,

tcr ≈ rin(0)

u

(
Ṁd0 g

√
2 vKi

Ṁw (H/r)i vw

) 1
β+1/2

. (15)

Formally, tcr is independent of rin. The dominant factors determin-
ing this time-scale are u and [vwṀw/(vKiṀd0)] with, for example,
tcr ∝ u−1[vKiṀd0/(vwṀw)])1.43 for β = 0.3. The physical interpre-
tation of equation (15) is that the time-scale tcr is larger than viscous
accretion time-scale rin(0)/u by a dimensionless factor which scales
as a fractional power of the ratio of the momentum flux of the ex-
pelled disc matter ṀdvK to the momentum flux of the wind Ṁwvw.

Fig. 3 shows the behaviour of �̂(r, t) for an illustrative case
where (1) t > 0, (2) the stellar wind has Ṁw = 10−10 M� yr−1

and vw = 103 km s−1, (3) the initial disc accretion rate is
Ṁd0 = 10−8 M� yr−1, and (4) the viscosity coefficient is α = 0.01.
A central hole in the disc appears at t/tin ≈ 7.8 × 103 when
�̂(rin, t) = 0 at t ≈ 2 × 106 yr which is approximately equal to tcr of
equation (15).

After a hole starts to form for t > tcr, we can rewrite the nor-
malizations to rin in terms of normalizations to rout = const. For
example, H/r = (H/r)out(r/rout)β . In this way, we find for t > tcr,

rhole(t)

rin(0)
≈ 1 + 0.56

(
t − tcr

tin

)1.25

, (16)

where tin = rin(0)/u. Evidently, the hole expands rapidly for t > tcr.
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4 IN F L U E N C E O F C M E s

The foregoing has considered disc erosion by a steady stellar wind.
Note however that significant disc erosion can arise the episodic
component of the stellar wind, namely, from frequent powerful
CMEs. Recent Kepler data provided new insights on the properties
of stellar activity in magnetically active stars. Specifically, they
show the occurrence rates of flares with energies greater 1034 erg
referred to as superflares. The data indicate that the occurrence rate
of superflares from G-type stars follow the power-law relation with
the flare’s energy Ef as

dN

dEf
= kE−α

f events s−1, (17)

where α ≈ 2.1 and k ≈ 2.7 × 1032 in cgs units (Aarnio, Matt &
Stassun 2013). This characterization of stellar activity is important
not only in terms of understanding the total radiative output from
young stars, but also in terms of the mass output in the form of
CMEs that usually accompany solar flares. CMEs cannot be directly
observed from other solar-like stars except for possible type III and
type IV bursts at decametre wavelength introduced by accelerated
electrons as a CME propagates out from the solar/stellar corona
(Boiko et al. 2012; Konovalenko et al. 2012; Massi et al. 2013).
However, the frequency of CMEs from the young Sun and other
active stars can be estimated from their association with solar/stellar
flares. Recent SOHO/ Large Angle and Spectrometric Coronagraph
Experiment (LASCO) and STEREO observations of energetic and
fast (≥500 km s−1) CMEs from the Sun show strong association
with powerful solar flares (Yashiro & Gopalswamy 2009; Aarnio
et al. 2011). This empirical correlation provides a direct way to
characterize CME frequencies of occurrence from statistics of solar
and stellar flares via equation (17). The total ejected mass in each
solar CME scales with the energy of the associated flare emitted in
X-rays as

MCME = (2.7 ± 1.2) × 10−3E
β
f g, (18)

where β ≈ 0.63 and kM ≈ 2.7 × 10−3 in cgs units (Aarnio et al.
2011). The solar CME masses vary between 1015 and 5 × 1016 g
and contributes about 4 per cent of the total mass loss due to the
solar wind.

If we extrapolate this relation to stellar superflares on young stars
with the maximum energy of E = 1036 erg, then the ejected mass
per single event in a T Tauri star can be obtained by integrating
equation (18) over the occurrence rate from equation (17) as

ṀCME =
∫ Emax

Emin

dEfM(Ef )
dN

dEf
, (19)

where Emin,max are discussed by Aarnio et al. (2013). Given the
uncertainty of the power-law index α in equation (17), the calculated
mass-loss rate due to CMEs is ∼(3–10) × 10−10 M� yr−1 (Aarnio
et al. 2013; Drake et al. 2013).

The disc erosion rate due to sporadic high-velocity CMEs with
ṀCME comparable to the above considered steady wind Ṁw is
expected to be similar to the steady disc erosion rate. A CME
impacting the disc at a distance r with momentum MCMEvCME can
eject disc matter �Md with momentum �Md vesc(r).

5 C O N C L U S I O N S

This work develops an analytic model of protodiscs’ gas and en-
trained dust erosion due to high-velocity magnetized stellar winds.
The presence of the magnetic field leads to Reynolds numbers suffi-
ciently large to cause a strongly turbulent wind/disc boundary layer.

This boundary layer entrains and carries away the disc gas and en-
trained dust. Strong magnetized winds from young stars (�107 yr)
with discs are likely because the stars are known to rotate rapidly
and to be strongly magnetized. The analytic model assumes a steady
stellar wind with mass-loss rate Ṁw ∼ 10−10 M� yr−1 and velocity
vw ∼ 103 km s−1. However, in Section 4, we discuss the contribu-
tion to the disc erosion due to frequent powerful CMEs where the
average mass-loss rate in CMEs (ṀCME) and velocities (vCME) have
values comparable to those for the steady wind.

Sample results for the evolution of the disc surface density �̂d =
�d(r, t)/�(r, 0) are shown in Fig. 3. The inner region of the disc
surface density decreases more rapidly than that at larger radii with
the result that a hole forms after a critical time tcr. For the case shown,
this time is about 2 × 106 yr. The critical time is proportional to
the inverse accretion speed in the disc u = const times the ratio
Ṁd0/Ṁw raised to a power larger than unity, where Ṁd0 is the
initial disc accretion rate and Ṁw is the mass-loss rate in the wind.
The radius of the hole expands continuously with time. This is an
important difference between wind erosion and photoevaporation
models where the inner hole is typically less than 10 au (Owen,
Ercolano & Clarke 2011). The possible role of wind erosion for
transition discs is complicated by the likely presence of one or
more planets at radii �10 au (Espaillat et al. 2014). More realistic
models would have u dependent on space and time, and vw and Ṁw

dependent on time as the star spins down.
The stellar wind disc erosion in the presence of a radially dis-

tributed magnetocentrifugal disc wind (Blandford & Payne 1982)
remains to be investigated. One possibility is that any radially dis-
tributed poloidal magnetic field initially threading the disc is ad-
vected inwards to the disc/magnetosphere boundary where it gives
rise to a steady X-wind (Shu et al. 1994) or to the episodic conical
wind outflows found in global MHD simulations (e.g. Romanova
et al. 2009; Lii et al. 2012, 2014; Dyda et al. 2013; Zanni & Ferreira
2013). During the intervals when the conical wind is ‘off’, the stellar
wind can flow freely and impact the disc. Another possibility is that
a radially distributed poloidal field Bp(r) exists out to r � 10 au for
the disc lifetime and gives rise to magnetically driven winds as found
in the MHD shearing box simulations of Bai & Stone (2013a,b).
The mass-loss in these winds could provide another mechanism for
disc dispersal (Armitage, Simon & Martin 2013). The stellar wind
erosion discussed here is expected to dominate the magnetic disc
winds if the ram pressure of the wind ρwv2

w is larger than B2
p /8π .
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